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Dissipation of mechanical energy affects in many cases the temperature regime in flowing highly 
viscous materials. We examined this effect for a developed streaming of a non-Newtonian fluid 
with temperature-independent properties in a pipe with a constant heat flux through its wall. 

The principle of the exact solution of a temperature field by separation of variables 
for the case of constant heat flux through the wall, which leads to a series of eigen
functions, has been already developed and some results for Newtonian fluids have 
been described e.g. in a monograph by Petukhov1

. Problems on heat transfer into 
non-Newtonian fluids through the wall at these boundary conditions have not been 
solved to a satisfactory extent. 

In our previous work2 we gave a detailed description of the heat transfer problem 
with dissipation for a non-Newtonian fluid in a pipe at the boundary condition of 
the first kind - i .e. with a constant temperature of the wall. Here we are going to 
outline the exact solution obtained in an analogous manner for the case of the bound
ary condition of the second kind - constant heat flux through the wall. As the main 
contribution of this work , however, we consider the derivation of a simple asymptotic 
formula for the thermal entrance region, in which most technically important heat 
transfer processes proceed . 

Exact Solulion 

For a steady-state pipe flow of a non-Newtonian fluid obeying the temperature
independent power-law rheological model 

r = KD n
, (1) 

the heat balance is represented by the equation 

3, + s [ (R)1 +SJ aT _ k a ( aT) [(3 + s) U J1 +n ( R )1 +5 (!CpU -- 1 _ - - - - - R - + K -
1 + S RI ax R aR aR R1 R1 

(2) 
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A constant input temperature, constant heat flux through the wall and symmetry 
conditions constitute boundary conditions of the second kind: 

T= To for x=o (3) 

aTjaR = qwjk for R = Rl (4) 

aTjaR = 0 for R = O. (5) 

Basic features of solution of system (2) - (5) are analogous to those described earlier2: 
after introducing dimensionless variables 

(6), (7) 

and two new variables with the dimension of temperature 

the temperature field assumes the form of 
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The notation of the curves is identical with 
that on Fig. 1. 
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Two dimensionless functions t2(r, z), t20(r, z) can be expressed as series of eingen
functions. Values of first eight eigenfunctions, eigenvalues, and coefficients in these 
series were calculated numerically and employed further for obtaining values of 
functions t2 and tzo' These results are illustrated on Figs 1-2; hence it is obvious 
that courses of dimensionless functions tz and t20, which were introduced through 
relations (8)-(10), do not depend significantly on the non-Newtonian behaviour 
of the fluid in the region of medium values of z. At large values of z, these functions 
may be described by asymptotic formulas 

hmtz(r,z)=z +-- ----- - , . 3 + s [rZ r3 + s ] (3 + s y - 8 

Z~CI) 1 + s 4 (3 + s)Z 8(1 + s)(3 + s) (5 + (s) 

r3 +s 1 
lim t2D(r, z) = tzCr, z) - --- + -----
z~O') 2(3 + s) 2(3 + s) 5 + s) 

Asymptotic Solution for z ---+ 0 

(11) 

(12) 

At small values of z, which correspond to most technical applications, the series of 
eigenfunctions converge slowly and, moreover, during the computation of the 
functions themselves, problems of numerical stability are encountered. In this region, 
however, the heat transfer proceeds mainly in an immediate vicinity of the wall, which 
is also obvious from Figs 1- 2, and a similarity solution of the Leveque type may 
be applied to .this case. Tilis offers a possibility of expressing tz as 
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(I3) 

with 

e = (1 - r) [(3 + S)/Z]1 /3, (14) 

and the function epee) is a solution of the ordinary differential equation 

3ep" + ep'e - epe = 0 (I5) 

with boundary conditions 

ep'(O) = -t, ep( ex)) = 0 , (16), (17) 

which is illustrated on Fig. 3. Similarly, the function 120 can be exp~essed as 

(18) 

in which the auxiliary function 1/1 ( e) is a solution of the equation 

31/1" + 1/1' e - Ne + 3 = 0 (19) 

with boundary conditions 

1/1'(0) = 0, 1/1 ( ex)) = 0 (20), (21) 

which is illustrated on Fig. 3. 
By combining relations (10), (13), and (I8) we obtain the approximate formula 

T(e, z) ~ lim T(e, z) = To + (2qwRI/k) [(3 + s)/z]1/3(p(e) + 
z~o 

(22) 

which yields results satisfactorily accurate for technical calculations up to z = o· J . 

The whole analysis outlined is based on the assumption of temperature-independent 
rheological properties of the fluid . In spite of this, similarly as it was shown in the case 
with constant temperature of the wall3

, we may assume that formula (22) supplement
ed with correction terms can be employed for real cases with nonisothermal flow, 
too. It is advantageous to correlate experimental or numerical data by using di
mensionless groups from formula (22), from which it also follows that the criterion 

(23) 
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can be employed for estimating the effect of dissipation on the temperature field. 
If it holds n DO ~ 1, the dissipation effect can be neglected at z < 0·1. 

List of Symbols 

cp specific heat 
D shear rate 
k thermal conductivity 
K consistency coefficient 

flow index 
qw heat flux through the wall 

dimensionless radial coordinate 
R radia l coordinate 
R1 radius of the pipe 
s = lin 
T temperature 
To input temperature 
TO' To characteristic temperatures of the process 
f2' f 20 dimensionless temperatures 
V mean velocity 

axial coordinate 
dimensionless axial coordinate 
dimensionless distance from the wall 

rp, I/f dimensionless functions 
density 

noo dissipation criterion in the entrance region 
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